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Abstract. In the present paper, we have made an attempt to study the effects of the presence of a magnetic
field on the cavity formation inside a blast wave propagating into a perfectly conducting gas with density
varying as some power of distance from the plane or line of explosion. In order to obtain the closed
form solutions for the flow variables inside the blast wave and to solve the problem of cavity formation
analytically, a relation is taken between the ordinary pressure and the total pressure. It is found that if
the value of the inhomogeneity index α is greater than a critical value αc (a function of MA – Alfven Mach
Number, γ – adiabatic index and i – wave geometry index), a contact discontinuity appears at some point
inside the blast wave and the cavity formation occurs. The effect of the presence of magnetic field is found
to increase the tendency of cavity formation.

PACS. 47.40.-x Compressible flows; shock and detonation phenomena – 47.65.+a Magnetohydrodynamics
and electrohydrodynamics

1 Introduction

When a large amount of energy is suddenly released in a
relatively small region, a disturbance headed by a strong
shock wave called ‘blast wave’ is produced and propagates
into the surrounding gaseous medium. Since the early
work of Taylor [1], a considerable number of publications
on the blast wave propagation have appeared in the lit-
erature, including treatises and reviews such as those of
Sedov [2], Sakurai [3], Lee et al. [4] and Korobeinikov [5].
The pioneering studies of this phenomena (Taylor [1] and
Sedov [2]) were based on self-similarity considerations and
found in good agreement with experimental results. An-
alytical solutions for the blast wave propagation in ho-
mogeneous and non-homogeneous medium have been ob-
tained by Rogers [6], Bach and Lee [7], Laumbach and
Probstein [8], Sachdev [9] and many others. Laumbach
and Probstein [8], and Sachdev [9] used an approach,
based on the shock propagation theory of Brinkley and
Kirkwood [10], which permits a simple analytical solution
to be obtained directly from integrated form of the fun-
damental equations. Rogers [6] obtained the closed form
solution for spherical blast wave, and discussed about the
formation of cavity in the region behind the shock front
in the case when the density of the undisturbed medium
varies as r−α, where r is distance from the point of explo-
sion and α a constant.

Since at high temperatures, the normal gases like hy-
drogen and even helium are ionized and the medium be-
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haves like a medium of very high electrical conductivity,
the electromagnetic effects may also be significant. One
is thus led to study the interaction of electromagnetic
field with gasdynamic forces. There are many problems
in which the energy in the electric field is much smaller
than that in the magnetic field. In these cases, all the
electromagnetic quantities may be expressed in terms of
magnetic field. As a result, one may consider only the in-
teraction between the magnetic field and the gasdynamic
field. This analysis is the well known “Magnetogasdy-
namics”. Study of magnetogasdynamic shock waves and
detonations has considerable applications in various as-
trophysical, geophysical and technological problems, for
example, propagation of a flare produced shock in the so-
lar wind (Lee and Chen [11], Summers [12]), generation
of gas-ionizing shock waves by magnetic compression to
produce high temperature plasma samples in laboratory
(Sakurai [3], Nagayama [13]) and cylindrical blast wave
produced by a wire explosion (Sakurai [3], Christer and
Helliwell [14]).

Similarity solutions for the blast wave phenomena in
magnetogasdynamics have been obtained by a number
of authors, for example, Pai [15], Cole and Greifinger
[16], Sakurai [3], Christer and Helliwell [14], Ray [17],
Summers [12], Verma, Vishwakarma and Sharan [18], and
Singh and Singh [19], but little attention is given to
the formation of cavity in the region behind the shock
front. In the present paper, we have made an attempt to
study the effects of the presence of a magnetic field on
the cavity formation inside a blast wave propagating into



248 The European Physical Journal B

a perfectly conducting gas with density varying as r−α, r
being the distance from the plane or line of explosion and
α a constant. In order to obtain the closed form solution
for the flow variables inside the blast wave and to solve
the problem of cavity formation analytically the pressure
is taken in the form (Golitsyn [20], and Ojha, Nath and
Takhar [21])

p = βp∗, (0 < β < 1) (1.1)

where p and p∗ are the gas pressure and the total pressure
(sum of gas pressure and magnetic pressure), respectively.
It is found that if the value of the inhomogeneity index α
is greater than a critical value αc (a function of MA-Alfven
Mach number, γ– adiabatic index and i – wave geometry
index), a contact discontinuity appears at some point in-
side the blast wave and the cavity formation occurs. The
effect of the magnetic field is found to increase the ten-
dency of cavity formation.

2 Equations of motion and boundary
conditions

We seek solutions of the magnetogasdynamic equations
which govern a planar or cylindrically symmetric flow of a
perfectly conducting gas across a magnetic field which is
normal to the flow (axial magnetic field in the case of cylin-
drical symmetry). The gas is supposed ideal, and endowed
with an adiabatic index γ. Viscosity, thermal conductivity
and electrical resistivity are ignored.

The model equations therefore consists of the usual
statement of conservation of mass, momentum and en-
ergy, and a magnetic field equation. The magnetic field
equation contains all the relevant information needed from
Maxwell’s equations and Ohm’s law; the diffusion term is
omitted from it by virtue of the assumed perfect electri-
cal conductivity. The omission of the diffusion term from
the magnetic field equation means that the magnetic field
under consideration is such that the magnetic lines of
forces are “frozen” into the material (Cowling [22]). These
equations govern the mass density ρ, the velocity u, the
pressure p, and the magnetic field h, all of which depend
only on the time t and the distance r from the initial
plane or axis of disturbance. They are (Verma and Vish-
wakarma [23], Whitham [24], Sakurai [3])

∂ρ

∂t
+ u

∂ρ

∂r
+ ρ

∂u

∂r
+

iρu

r
= 0, (2.1)

∂u

∂t
+ u

∂u

∂r
+

1
ρ

∂p

∂r
+

µh

ρ

∂h

∂r
= 0, (2.2)

∂

∂t
(pρ−γ) + u

∂

∂r
(pρ−γ) = 0, (2.3)

∂h

∂t
+ u

∂h

∂r
+ h

∂u

∂r
+
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where µ is the magnetic permeability, and i = 0, 1 for
planar and cylindrical symmetries, respectively.

Taking the pressure in the form as given in equa-
tion (1.1), and using the relation

h

ρ
= const., (2.5)

as obtained from equations (2.1) and (2.4), the effective
speed of sound c is defined by

c2 =
dp∗

dρ
= a2 + b2 =

γ∗p∗

ρ
, (2.6)

where

p∗ = p +
µh2

2
is the total pressure,

a2 =
γp

ρ
is the square of the sound speed,

b2 =
µh2

ρ
is the square of the Alfven speed,

and
γ∗ = γβ + 2(1 − β). (2.7)

Assuming the flow to be isentropic and β to be a con-
stant (Verma and Vishwakarma [25], Ojha, Nath and
Takhar [21]), equation (2.6) gives rise to the energy equa-
tion in the form

∂

∂t
(p∗ρ−γ∗

) + u
∂

∂r
(p∗ρ−γ∗

) = 0, (2.8)

which is the same as if γ and p were replaced by γ∗ and p∗
in the equation (2.3).

Equation of energy in the form (2.8) is true only when
equation (2.5) holds and β has a constant value. The as-
sumption that β is constant, physically means that the
gas pressure and the magnetic pressure are in a constant
ratio, that is, the speed of sound and the Alfven speed
are in a constant ratio. Also, equation (2.5) holds only
when the electrical conductivity of the gas is infinite and
the magnetic field is axial in the case of cylindrically sym-
metric flow and normal to the flow in the case of planar
symmetry. As already stated, we have considered all these
assumptions, in order to obtain closed form similarity so-
lutions of the problem of cavity formation inside a mag-
netogasdynamic blast wave.

Using (2.1), equation (2.8) becomes

∂p∗

∂t
+ u

∂p∗

∂r
+ γ∗p∗

(
∂u

∂r
+

iu

r

)
= 0. (2.9)

From equations (2.1, 2.2) and (2.9), we get
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+

1
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∂
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where

E =
ρu2

2
+

p∗

γ∗ − 1
and I = E + p∗.
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It is assumed that, at time t = 0, an explosion takes
place over a plane or along a line, accompanied by release
of a finite amount of energy E0. A plane or cylindrical
strong shock is instantaneously formed which begins to
propagate outward into a perfectly conducting gas at rest.
The density and the magnetic field ahead of the shock are
assumed to vary as

ρ0 = ρc R−α, (2.11)

and
h0 = hc R−α1 , (2.12)

where R is the distance of the shock surface from the plane
or line of explosion, and ρc, hc, α and α1 are constants.
The mass in the undisturbed state of the gas within a
distance (or radius) r must be positive which requires that
α < i + 1.

The Rankine-Hugoniot boundary conditions in the
case of a very strong shock take the form (Whitham [24],
Summers [12])

u1 =
2V

γ + 1
, (2.13)

ρ1 = ρ0
γ + 1
γ − 1

, (2.14)

p1 =
2ρ0V

2

γ + 1
, (2.15)

h1 = h0
γ + 1
γ − 1

, (2.16)

where u1, ρ1, p1, h1 are the values of variables immediately
behind the shock which is travelling with velocity V = dR

dt .
The flow in the disturbed region behind the shock (the

blast wave region) is governed by equations (2.1, 2.2, 2.4)
and (2.8) or (2.9).

3 Similarity considerations

To obtain similar solutions, we write the unknown vari-
ables in the following form

u = V f(x), (3.1)
ρ = ρ0G(x), (3.2)

P = ρ0V
2P (x), (3.3)√

µh =
√

ρ0V H(x), (3.4)

where f , G, P and H are the functions of the non-
dimensional variable x = r/R(t) only. The shock front
is represented by x = 1.

If the initial energy is assumed to be negligible, the
energy release E0 equals the total energy within the blast
wave region, i.e.,

E0 = σi

∫ R

0

(
1
2
ρu2 +

p

γ − 1
+

µh2

2

)
ridr, (3.5)

where σi = 2iπ + (1 − i).
Applying the similarity transformations (3,1) to (3.4)

in the relation (3,5), we find that the motion of the shock
front is given by the equation

V =
dR

dt
=

(
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σiρcJ

)1/2

R(α−i−1)/2, (3.6)

where J =
∫ 1

0

(
1
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2

)
xidx.

Equation (3.6), on integration, yields
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(
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2

)2/(i−α+3) (
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σiρcJ

)1/(i−α+3)

t2/(i−α+3)

(3.7)
and therefore,

V =
2

i − α + 3
R

t
· (3.8)

After using the similar transformations, the equa-
tions (2.1, 2.2, 2.4, 2.9) and (2.10) change into the fol-
lowing set of ordinary differential equations:
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G
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x
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G
+
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2
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(
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if

x

)
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(xifI)′ = xi+1E′ + (i + 1)Exi, (3.13)

where primes denote derivatives with respect to x, and

P ∗ = P +
1
2
H2.

The boundary conditions (2.13) to (2.16) change into

f(1) =
2
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, (3.14)

G(1) =
γ + 1
γ − 1

, (3.15)

P (1) =
2

γ + 1
, (3.16)

H(1) =
γ + 1
γ − 1

M−1
A , (3.17)

where MA = V/
(

µh2
0

ρ0

)1/2

is the Alfven Mach number, and
2α1 = i + 1, as obtained from similarity considerations.

At the shock, the relation (1.1) enables us to obtain
the value of β in terms of γ and MA as

β =
2/(γ + 1)

2
(γ+1) + 1

2

(
γ+1
γ−1

)2

M−2
A

·
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4 Analytical solutions

Integrating the equation (3.13), we get

fI = xE (4.1)

which can be written in the form

P ∗

G
=

(x − f)(γ∗ − 1)f2

2(γ∗f − x)
· (4.2)

By taking certain linear combination of equations (3.9)
and (3.12), it is also possible to obtain a second integral
(Rogers [6]),

G(i+1)(γ∗−1)/(i−α+1) = C1P
∗xi(x − f)(i+1−γ∗α)/(i−α+1),

(4.3)
where C1 is the constant of integration and its value can
be easily calculated from the boundary conditions. From
equations (4.2) and (4.3), we get

G = C2

{
f2(x − f)
(γ∗f − x)

} (i+1−α)
(γ∗−2)(i+1)+α

× {
xi(x − f)

} (i+1−γ∗α)
(γ∗−2)(i+1)+α , (4.4)

where C2 is suitable constant. Using (4.4) in (4.2), we get

P ∗ = P +
1
2
H2

= C3

{
f2

γ∗f − x

} (i+1)(γ∗−1)
(i+1)(γ∗−2)+α

x
i(i+1−γ∗α)

(i+1)(γ∗−2)+α

× (x − f)
γ∗(i+1−α)

(i+1)(γ∗−2)+α , (4.5)

where C3 is a constant, which can be determined with help
of the boundary conditions. Further, from (1.1), we have

H = {2(1 − β)P ∗}1/2. (4.6)

The function f(x) is yet to be determined. Using (3.12)
and (4.2) in (3.10), we get a differential equation in f
and x,

df

dx
=

f

x

{
Af2 + Bfx + Cx2

A1f2 + B1fx + 2x2

}
, (4.7)

where

A = −γ∗(γ∗ − 1)i, B = −(γ∗α − 2γ∗i − 2γ∗ + i + 1),
C = (α − i − 1), A1 = γ∗(γ∗ + 1), B1 = −2(γ∗ + 1).

Equation (4.7) shows that no singularity can occur in
the velocity profile except perhaps on x = 0. Since f ′(x)
is a function of f/x, any line f = kx will satisfy the dif-
ferential equation (4.7), provided that

(A1 − A)k3 + (B1 − B)k2 + (2 − C)k = 0.

The roots of this cubic equation in k are

k1 = 0, k2 = (1/γ∗), k3 = (i+3−α)/(γ∗i+γ∗+1−i).

The importance of these lines (f/x = k1, k2, k3) lies in
the fact that no solution curve of (4.7) can cross them
at any point except at the origin. They, therefore, act as
guide lines for the velocity profiles. The particular solu-
tion, which we require, is that which satisfies the bound-
ary condition f(1) = 2

γ+1 . This gives rise to three types
of solutions according to

2
γ + 1

≶ i + 3 − α

γ∗i + γ∗ + 1 − i
,

which can be expressed in terms of α as α ≶ αc, where

αc = (i + 1) − 2
γ + 1

{(γ∗ − γ) + i(γ∗ − 1)}·

Thus there exists a critical value αc of α such that the
velocity profiles for α < αc will be between the lines

f =
1
γ∗x and f =

(i + 3 − α)x
(γ∗i + γ∗ + 1 − i)

·

The velocity profiles for α > αc will lie above these lines,
and for α = αc will coincide with the line f = 2

γ+1x.
The self-similar solution of the present problem in

the case of α = αc, is obtained in a very simple form,
from (4.4, 4.5) and (4.6), as
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2
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x,
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1
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where
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(i + 1)(γ∗ − 2) + αc
·

The solution of the homogeneous differential equa-
tion (4.7) is

(
γ + 1

2
f

x

)a1 {
a2
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7

a2
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8
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=

1
x

, (4.9)

where,

a1 =
2
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, a2 = γ∗(γ∗ + 1)(1 − α) + γ∗(3 − γ∗)i,

a3 = γ∗(γ∗ − 1)i + (γ∗ + 1)γ∗,
a4 = γ∗α − (2γ∗ − 1)i − 4γ∗ − 1,
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√
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Fig. 1. Variation of velocity with distance in the region behind
cylindrical shock wave.

The equations (4.4, 4.5, 4.6) and (4.9) form the com-
plete set of self-similar analytical solutions for the blast
wave problem under the present investigations. These
solutions are analogous to the solutions obtained by
Rogers [6] in ordinary gas dynamics.

5 Results and discussion

Calculations have been performed from equa-
tions (4.4, 4.5, 4.6) and (4.9) to obtain the dimensionless
flow variables f , G, P and 1

2H2 in the region behind
the shock front for γ = 7

5 , 5
3 ; α = 1.2, 1.6; M−2

A = 0, 0.1;
and i = 1. The value M−2

A = 0 corresponds to the
non-magnetic case. M−2

A = 0.001 corresponds to a
very weak ambient magnetic field, and Rosenau and
Frankenthal [26] have shown that the corresponding flow
is very close to that of the non-magnetic case. They
have also found that when M−2

A = 0.01, the magnetically
dominated layer in the flow-field behind the shock is
thicker than that for M−2

A = 0.001, and when M−2
A = 0.1

the influence of magnetic forces is evident throughout the
flow-field. We, therefore, have taken M−2

A = 0.1 to study
the phenomenon of cavity formation inside the blast wave
in presence of magnetic field.

The variation of the flow variables, are shown in Fig-
ures 1 to 4. It is found that, for α > αc, the density G
increases (see Fig. 2), the gas pressure P and the mag-
netic pressure 1

2H2 decrease sharply as we move inward

Fig. 2. Variation of density with distance in the region behind
cylindrical shock wave.

from the shock front (see Figs. 3 and 4), while the veloc-
ity f decreases up to a critical point which is the point of
intersection of the velocity profile with the line f = x (see
Fig. 1). At this critical point (x = x0), the density G be-
comes exceedingly large, the gas pressure P and the mag-
netic pressure 1

2H2 become small, whereas the velocity f
suddenly begins to increase. This shows that a disconti-
nuity surface r = S(t) arises at the point x = x0, where

u = V f(x0) = V x0, (5.1)

and

dS

dt
=

d
dt

(Rx0) = V x0. (5.2)

Thus the discontinuity surface S(t) is a contact surface,
which disallows mass flux across it but moves as a solid
with the fluid velocity (since u = dS

dt from Eqs. (5.1)
and (5.2)).This results in the cavity formation. A physical
explanation of cavity formation may be given as follows:

Very high increase in the density and high decrease in
the gas pressure and the magnetic pressure at the criti-
cal point inside a blast wave results in conversion of huge
amount of energy (internal and magnetic) into kinetic en-
ergy. The concentrated matter, therefore, moves suddenly
with a very high speed causing the formation of cavity.
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Fig. 3. Variation of magnetic pressure with distance in the
region behind cylindrical shock wave.

From Figure 1 and Table 1, we find the main effects of
increasing the ambient magnetic field as follows:

(a) Curves (3) and (4) in Figure 1 show that the point of
intersection of the line f = x with the velocity profile is
nearer to the shock front for M−2

A = 0.1 in comparison
with that for M−2

A = 0. Therefore an increase in the
ambient magnetic field reduces the distance between
the inner contact surface and the shock front.

(b) In Figure l, curve (5) is the velocity profile for M−2
A =

0.1 and curve (6) in that for M−2
A = 0.1 with the

same values of α and γ. The line f = x intersects
the curve (6) but not the curve (5). This shows that
an increase in the ambient magnetic field increases the
tendency of the cavity formation inside the blast wave
region.

(c) Table 1 shows that αc decreases by an increase in M−2
A ,

which ultimately concludes the same result as in (b)
above.

Thus the presence of magnetic field, in general, in-
creases the tendency of automatic occurrence of contact
discontinuity and the formation of cavity inside the blast
wave region. This is perhaps due to the fact that, in pres-
ence of magnetic field, there is conversion of not only inter-
nal energy but also of the magnetic energy into the kinetic
energy at the critical point inside the blast wave region,
which is responsible for the cavity formation.

For α < αc, the solution curves are approaching the
origin and the velocity profile does not intersect with the

Fig. 4. Variation of pressure with distance in the region behind
cylindrical shock wave.

Table 1. Variation of αc with γ and M−2
A , for i = 1.

γ 7
5

7
5

7
5

5
3

5
3

5
3

M−2
A 0 0.01 0.1 0 0.01 0.1

αc 1.6667 1.4890 0.9831 1.5 1.4518 1.2419

line f = x. Therefore, in general, there is non-occurrence
of discontinuity surface and not formation of cavity inside
the blast wave region.

One can see from figures that cavitation does or does
not occur as a function of α, for given values of MA and γ.
For example, in Figure 1, curves 2 and 4 are the velocity
profiles for the same values of MA and γ but for differ-
ent values of α. Curve 2 corresponds to α = 1.2 which is
less than αc(= 1.2419) in this case, whereas curve 4 cor-
responds to α = 1.6 which is greater than αc. Curve 4
intersects with the line f = x at a critical point where a
discontinuity (contact) surface occurs which moves with
the fluid velocity causing the formation of a cavity. Curve
2 does not intersect with the line f = x and no cavity is
formed.
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